Solution :
Taken moment about point B;
[tex]$\sum M_B = 0$[/tex]
[tex]$\left[(w)(4)(2)-N_A \sin 30^\circ (3)(\sin 30^\circ)-N_A \cos 30^\circ(3 \cos 30^\circ +4) \right] =0$[/tex]
[tex]$N_A = 1.2376w$[/tex]
[tex]$\sum F_x = 0$[/tex]
[tex]$N_A \sin 30^\circ - B_x = 0$[/tex]
[tex]$B_x = 1.2376w \times \sin 30^\circ$[/tex]
[tex]$B_x = 0.6188w$[/tex]
[tex]$\sum F_y = 0$[/tex]
[tex]$B_y+N_A \cos^\circ - (w \times 4) = 0$[/tex]
[tex]$B_y+(1.2376w) \cos 30^\circ - (w \times 4)=0 $[/tex]
[tex]$B_y = 2.9282w$[/tex]
Now calculating the resultant force at B,
[tex]$F_B= \sqrt{B_x^2+B_y^2}$[/tex]
[tex]$F_B= \sqrt{(0.6188w)^2+(2.9282w)^2}$[/tex]
= 2.9929w
For no failure,
[tex]$N_A<4 \ kN $[/tex]
2.9929 w < 4 kN
[tex]$w < 3.232 \ kN/m$[/tex]
And,
[tex]$F_B < 8 \ kN$[/tex]
2.9929 w < 8 kN
w < 2.673 kN/m
For the safe operation, w = 2.673 kN/m