Answer:
[tex]Expected\ Value = 3[/tex]
Step-by-step explanation:
Given
[tex]Red\ Balls = 3[/tex]
[tex]Blue\ Balls = 1[/tex]
Required
Determine the expected number of red balls
First, we calculate the probability of a red ball
[tex]P(Red\ Ball) = \frac{Red\ Ball}{Total}[/tex]
[tex]P(Red\ Ball) = \frac{3}{3 + 1}[/tex]
[tex]P(Red\ Ball) = \frac{3}{4}[/tex]
[tex]P(Red\ Ball) = 0.75[/tex]
The expected value is then calculated as:
[tex]Expected\ Value = P(Red\ Ball) * Total[/tex]
[tex]Expected\ Value = 0.75 * 4[/tex]
[tex]Expected\ Value = 3[/tex]