Answer:
There are 220 choices
Step-by-step explanation:
Given
[tex]People = 12[/tex]
[tex]Selection =3[/tex] (President, Treasurer and Secretary)
Required
Determine number of selection (if no restriction)
This is calculated using the following combination formula:
[tex]^nC_r = \frac{n!}{(n - r)!r!}[/tex]
Where
[tex]n = 12[/tex]
[tex]r= 3[/tex]
So, we have:
[tex]^nC_r = \frac{n!}{(n - r)!r!}[/tex]
[tex]^{12}C_3 = \frac{12!}{(12 - 3)!3!}[/tex]
[tex]^{12}C_3 = \frac{12!}{9!3!}[/tex]
[tex]^{12}C_3 = \frac{12*11*10*9!}{9!3!}[/tex]
[tex]^{12}C_3 = \frac{12*11*10}{3!}[/tex]
[tex]^{12}C_3 = \frac{12*11*10}{3*2*1}[/tex]
[tex]^{12}C_3 = \frac{12*11*10}{6}[/tex]
[tex]^{12}C_3 = 2*11*10[/tex]
[tex]^{12}C_3 = 220\ ways[/tex]
There are 220 choices