Select the interval where f(x)>0
![Select the interval where fxgt0 class=](https://us-static.z-dn.net/files/de7/1c9e33e5f512b7f6c15d25b167f75c88.jpg)
![Select the interval where fxgt0 class=](https://us-static.z-dn.net/files/dbb/6ebb4cddce4b1b3e21a95fd1f1446397.jpg)
Given:
The graph of f(x).
To find:
The interval where f(x)>0.
Solution:
From the given graph it is clear that the graph of f(x) lies above the axis for the intervals (-4,-1) and (1,∞), so f(x)>0 for [tex]-4<x<-1[/tex] and [tex]1<x<\infty[/tex].
The graph of f(x) lies below the axis for the intervals (-∞,-4) and (-1,1), so f(x)<0 for [tex]-\infty<x<-4[/tex] and [tex]-1<x<1[/tex].
Form the given options, interval [tex]-2<x<-1[/tex] is the only interval for which the function lies above the x-axis.
Therefore, the correct option is A.