Given:
The point is (8,5).
To find:
A point on the y-axis such that its distance from the point (8,5) is 10 units.
Solution:
Let the required point on the y-axis be (0,k).
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
The distance between (8,5) and (0,k) is 10 units. Using distance formula, we get
[tex]10=\sqrt{(0-8)^2+(k-5)^2}[/tex]
Taking square on both sides.
[tex]100=64+(k-5)^2[/tex]
[tex]100-64=(k-5)^2[/tex]
[tex]36=(k-5)^2[/tex]
Taking square root on both sides.
[tex]\pm \sqrt{36}=k-5[/tex]
[tex]\pm 6=k-5[/tex]
Now,
[tex]6=k-5[/tex] and [tex]-6=k-5[/tex]
[tex]6+5=k[/tex] and [tex]-6+5=k[/tex]
[tex]11=k[/tex] and [tex]-1=k[/tex]
Therefore, the required point is either (0,11) or (0,-1).