Respuesta :

Given:

The point is (8,5).

To find:

A point on the y-axis such that its distance from the point (8,5) is 10 units.

Solution:

Let the required point on the y-axis be (0,k).

Distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The distance between (8,5) and (0,k) is 10 units. Using distance formula, we get

[tex]10=\sqrt{(0-8)^2+(k-5)^2}[/tex]

Taking square on both sides.

[tex]100=64+(k-5)^2[/tex]

[tex]100-64=(k-5)^2[/tex]

[tex]36=(k-5)^2[/tex]

Taking square root on both sides.

[tex]\pm \sqrt{36}=k-5[/tex]

[tex]\pm 6=k-5[/tex]

Now,

[tex]6=k-5[/tex] and [tex]-6=k-5[/tex]

[tex]6+5=k[/tex] and [tex]-6+5=k[/tex]

[tex]11=k[/tex] and [tex]-1=k[/tex]

Therefore, the required point is either (0,11) or (0,-1).

ACCESS MORE