Respuesta :

Given:

The inequality is

[tex]5(3-x)<-2x+6[/tex]

To find:

The inequality that solution describes all the solutions to the given inequality.

Solution:

We have,

[tex]5(3-x)<-2x+6[/tex]

Using distributive property, we get

[tex]5(3)+5(-x)<-2x+6[/tex]

[tex]15-5x<-2x+6[/tex]

[tex]15-6<-2x+5x[/tex]

[tex]9<3x[/tex]

Divide both sides by 3.

[tex]\dfrac{9}{3}<x[/tex]

[tex]3<x[/tex]

It can be written as

[tex]x>3[/tex]

Therefore, the value of x is greater than 3. So, the required inequality is either [tex]x>3[/tex] or [tex]3<x[/tex].