Respuesta :

Edwena

[tex]\sf{\bold{\green{\underline{\underline{Given}}}}} [/tex]

⠀⠀⠀⠀

  • w = 7a + 4b

______________________

[tex]\sf{\bold{\green{\underline{\underline{To\:Find}}}}} [/tex]

⠀⠀⠀⠀

  • Correct option = ??

______________________

[tex]\sf{\bold{\green{\underline{\underline{Solution}}}}} [/tex]

⠀⠀⠀⠀

W = 7a + 4b

⠀⠀⠀⠀

  • Using equations formulae

⠀⠀⠀⠀

[tex]\sf \implies W - 4b = 7a [/tex]

⠀⠀⠀⠀

[tex]\sf \implies \dfrac{W - 4b}{7} = a [/tex]

⠀⠀⠀⠀

  • checking correct option

⠀⠀⠀⠀

Option 1 :

⠀⠀⠀⠀

[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) \neq \bigg( a = \dfrac{W - 7b}{4}\bigg) [/tex]

⠀⠀⠀⠀

This option is not correct

⠀⠀⠀⠀

Option 2 :

⠀⠀⠀⠀

[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) \neq \bigg( a = \dfrac{W}{7} - 4b \bigg) [/tex]

⠀⠀⠀⠀

This option is not correct

⠀⠀⠀⠀

Option 3 :

⠀⠀⠀⠀

[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) = \bigg( a = \dfrac{W - 4b}{7}\bigg) [/tex]

⠀⠀⠀⠀

This option is correct

⠀⠀⠀⠀

Option 4 :

⠀⠀⠀⠀

[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) \neq \bigg( W = \dfrac{W}{7} - 28b \bigg) [/tex]

⠀⠀⠀⠀

This option is not correct

______________________

[tex]\sf{\bold{\green{\underline{\underline{Answer}}}}} [/tex]

⠀⠀⠀⠀

  • Correct answer = option C
RELAXING NOICE
Relax