I don’t know which one to pick

[tex]\sf{\bold{\green{\underline{\underline{Given}}}}} [/tex]
⠀⠀⠀⠀
______________________
[tex]\sf{\bold{\green{\underline{\underline{To\:Find}}}}} [/tex]
⠀⠀⠀⠀
______________________
[tex]\sf{\bold{\green{\underline{\underline{Solution}}}}} [/tex]
⠀⠀⠀⠀
W = 7a + 4b
⠀⠀⠀⠀
⠀⠀⠀⠀
[tex]\sf \implies W - 4b = 7a [/tex]
⠀⠀⠀⠀
[tex]\sf \implies \dfrac{W - 4b}{7} = a [/tex]
⠀⠀⠀⠀
⠀⠀⠀⠀
Option 1 :
⠀⠀⠀⠀
[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) \neq \bigg( a = \dfrac{W - 7b}{4}\bigg) [/tex]
⠀⠀⠀⠀
This option is not correct
⠀⠀⠀⠀
Option 2 :
⠀⠀⠀⠀
[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) \neq \bigg( a = \dfrac{W}{7} - 4b \bigg) [/tex]
⠀⠀⠀⠀
This option is not correct
⠀⠀⠀⠀
Option 3 :
⠀⠀⠀⠀
[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) = \bigg( a = \dfrac{W - 4b}{7}\bigg) [/tex]
⠀⠀⠀⠀
This option is correct
⠀⠀⠀⠀
Option 4 :
⠀⠀⠀⠀
[tex]\sf \bigg( a = \dfrac{W - 4b}{7} \bigg) \neq \bigg( W = \dfrac{W}{7} - 28b \bigg) [/tex]
⠀⠀⠀⠀
This option is not correct
______________________
[tex]\sf{\bold{\green{\underline{\underline{Answer}}}}} [/tex]
⠀⠀⠀⠀