Respuesta :
Question Given :
To find the value of m in ,
[tex]\implies\tt{2(m+2)=22}[/tex]
Solution :
[tex]\mapsto\tt{2(m+2)=22}[/tex]
[tex]\mapsto\tt{2{\times{m}+2\times2=22}}[/tex]
[tex]\mapsto\tt{2m+4=22}[/tex]
[tex]\mapsto\tt{2m=22-4}[/tex]
[tex]\mapsto\tt{2m=18}[/tex]
[tex]\mapsto\tt{} m = \dfrac{{ \cancel{18}}^{ \: 9} }{{ \cancel{2}}^{ \: 1} } [/tex]
[tex]\mapsto\tt{m=9}[/tex]
________________________
[tex]\boxed{\sf{\green{★Verification:}}}[/tex]
Equation given :
[tex]\mapsto\tt{2(m+2)=22}[/tex]
Putting the value of m in the equation :
[tex]\leadsto\tt{2(9+2)=22}[/tex]
[tex]\leadsto\tt{2{\times(9+2)=22}}[/tex]
[tex]\leadsto\tt{2\times11=22}[/tex]
[tex]\leadsto\tt{22=22}[/tex]
Hence,our L.H.S. = R.H.S.
Thus, Verified.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬