Plz Helppp meeee assapppp
![Plz Helppp meeee assapppp class=](https://us-static.z-dn.net/files/d8a/e6f85b81b49e7a3011ca64580c0eb184.png)
Given:
A right angled triangle.
To find:
The value of x.
Solution:
We have,
Base = x
Hypotenuse = [tex]\sqrt{5}[/tex]
In a right angle triangle,
[tex]\cos \theta = \dfrac{Base}{Hypotenuse}[/tex]
For the given triangle,
[tex]\cos 45^\circ= \dfrac{x}{\sqrt{5}}[/tex]
[tex]\dfrac{1}{\sqrt{2}}= \dfrac{x}{\sqrt{5}}[/tex]
Multiply both sides by [tex]\sqrt{5}[/tex].
[tex]\dfrac{\sqrt{5}}{\sqrt{2}}= x[/tex]
[tex]\dfrac{\sqrt{5}}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}= x[/tex]
[tex]\dfrac{\sqrt{10}}{2}= x[/tex]
Therefore, the required value of x is [tex]\dfrac{\sqrt{10}}{2}[/tex].