Respuesta :

Given:

A right angled triangle.

To find:

The value of x.

Solution:

We have,

Base = x

Hypotenuse = [tex]\sqrt{5}[/tex]

In a right angle triangle,

[tex]\cos \theta = \dfrac{Base}{Hypotenuse}[/tex]

For the given triangle,

[tex]\cos 45^\circ= \dfrac{x}{\sqrt{5}}[/tex]

[tex]\dfrac{1}{\sqrt{2}}= \dfrac{x}{\sqrt{5}}[/tex]

Multiply both sides by [tex]\sqrt{5}[/tex].

[tex]\dfrac{\sqrt{5}}{\sqrt{2}}= x[/tex]

[tex]\dfrac{\sqrt{5}}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}= x[/tex]

[tex]\dfrac{\sqrt{10}}{2}= x[/tex]

Therefore, the required value of x is [tex]\dfrac{\sqrt{10}}{2}[/tex].

ACCESS MORE