Step-by-step explanation:
6x⁵ + 8x⁴ + x³ + x² - 5x + 1
= (2x³ + x - 1)(Ax² + Bx + C) + (Dx + E)
= 2Ax⁵ + 2Bx⁴ + (2C + A)x³ + (B - A)x² + (C - B + D)x + (E - C)
By Comparing Coefficients, we have:
2A = 6
2B = 8
2C + A = 1
B - A = 1
C - B + D = -5
E - C = 1
Solving them, we have A = 3, B = 4, C = -1, D = 0, E = 0.
Therefore, 6x⁵ + 8x⁴ + x³ + x² - 5x + 1
= (2x³ + x - 1)(3x² + 4x - 1) + (0x + 0)
= (2x³ + x - 1)(3x² + 4x - 1).