Respuesta :

Answer:

Step-by-step explanation:

Question 1.

Slope of line 'l' = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

                         = [tex]\frac{8}{6}[/tex]

                         = [tex]\frac{4}{3}[/tex]

Equation of a line passing through (x', y') and slope 'm' is,

y - y' = m(x - x')

Since, line 'l' is passing through (0, 7) and slope = [tex]\frac{4}{3}[/tex]

Equation will be,

y - 7 = [tex]\frac{4}{3}(x-0)[/tex]

y = [tex]\frac{4}{3}x+7[/tex]

Similarly, slope of line m = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

                                         = [tex]\frac{-3}{6}[/tex]

                                         = [tex]-\frac{1}{2}[/tex]

Therefore, equation of line 'm' passing through point (0, -4) will be,

y + 4 = [tex]-\frac{1}{2}(x - 0)[/tex]

y = [tex]-\frac{1}{2}x-4[/tex]

Solution = Point of intersection of both the lines

               = (-6, -1)

Question 2

Slope of line 'l' = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

                         = [tex]\frac{-2}{5}[/tex]

Equation of line 'l' passing through a point (0, 4) and slope = -[tex]\frac{2}{5}[/tex]

y - 4 = [tex]-\frac{2}{5}(x-0)[/tex]

y = [tex]-\frac{2}{5}x+4[/tex]

Slope of line 'm' = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

                           = [tex]\frac{-2}{5}[/tex]

Equation of line 'm' passing through a point (0, -1) and slope = [tex]-\frac{2}{5}[/tex]

y + 1 = [tex]-\frac{2}{5}(x-0)[/tex]

y = [tex]-\frac{2}{5}x-1[/tex]

Since, slopes of both the lines are same, these lines will be parallel.

There will be NO SOLUTION.

ACCESS MORE