A cylindrical oatmeal soda can has a capacity of 344 ml. Find the dimensions that will minimize the amount of material needed to construct the container.

Respuesta :

Answer:

r = 3.797 cm

h = 7.594 cm

Step-by-step explanation:

The cylinder volume  V = πr² h

So, given that the volume = 344 ml

Then,

344 = πr² h

Make h the subject of the formula:

[tex]h = \dfrac{344}{\pi r^2}[/tex]  ----- (1)

Similarly, the surface area of a cylinder is expressed by:

A = 2πr² h + 2 πr²   ---- (2)

If we replace the value of h from above in  (1) to (2)

Then;

[tex]A = 2 \pi r (\dfrac{344}{\pi r^2})+2 \pi r^2[/tex]

[tex]A = \dfrac{688}{r}+ 2 \pi r^2[/tex]

Taking the differential of A with respect to r, we have:

[tex]\dfrac{dA }{dr} =- \dfrac{688}{r^2}+ 4 \pi r[/tex]

Set [tex]\dfrac{dA }{dr}=0[/tex] for the minimum surface area.

So,

[tex]0 =- \dfrac{688}{r^2}+ 4 \pi r[/tex]

[tex]\dfrac{688}{r^2} =4 \pi r[/tex]

Divide both sides by 4

[tex]\dfrac{177}{r^2} = \pi r[/tex]

[tex]r^3 = \dfrac{172}{\pi}[/tex]

[tex]r = \sqrt[3]{\dfrac{172}{\pi}}[/tex]

r = 3.797 cm

From (1), the height is:

[tex]h = \dfrac{344}{\pi r^2}[/tex]  

[tex]h = \dfrac{344}{\pi (3.797)^2}[/tex]

h = 7.594 cm

ACCESS MORE