Answer:
r = 3.797 cm
h = 7.594 cm
Step-by-step explanation:
The cylinder volume V = πr² h
So, given that the volume = 344 ml
Then,
344 = πr² h
Make h the subject of the formula:
[tex]h = \dfrac{344}{\pi r^2}[/tex] ----- (1)
Similarly, the surface area of a cylinder is expressed by:
A = 2πr² h + 2 πr² ---- (2)
If we replace the value of h from above in (1) to (2)
Then;
[tex]A = 2 \pi r (\dfrac{344}{\pi r^2})+2 \pi r^2[/tex]
[tex]A = \dfrac{688}{r}+ 2 \pi r^2[/tex]
Taking the differential of A with respect to r, we have:
[tex]\dfrac{dA }{dr} =- \dfrac{688}{r^2}+ 4 \pi r[/tex]
Set [tex]\dfrac{dA }{dr}=0[/tex] for the minimum surface area.
So,
[tex]0 =- \dfrac{688}{r^2}+ 4 \pi r[/tex]
[tex]\dfrac{688}{r^2} =4 \pi r[/tex]
Divide both sides by 4
[tex]\dfrac{177}{r^2} = \pi r[/tex]
[tex]r^3 = \dfrac{172}{\pi}[/tex]
[tex]r = \sqrt[3]{\dfrac{172}{\pi}}[/tex]
r = 3.797 cm
From (1), the height is:
[tex]h = \dfrac{344}{\pi r^2}[/tex]
[tex]h = \dfrac{344}{\pi (3.797)^2}[/tex]
h = 7.594 cm