Respuesta :
Answer:
The cubic regression that fits the points [tex](x,y) =(-2,-16)[/tex], [tex](x,y) = (1,5)[/tex], [tex](x,y) = (3, 59)[/tex] and [tex](x,y) =(6,440)[/tex] is [tex]y =2\cdot x^{3}+x+2[/tex].
Step-by-step explanation:
A cubic polynomial is a polynomial that has the following form:
[tex]y = a\cdot x^{3}+b\cdot x^{2}+c\cdot x + d[/tex] (1)
Where:
[tex]x[/tex] - Independent variable, dimensionless.
[tex]y[/tex] - Dependent variable, dimensionless.
[tex]a[/tex], [tex]b[/tex], [tex]c[/tex], [tex]d[/tex] - Coefficients, dimensionless.
We construct the following system of equations to determine the coefficients of the cubic regression:
[tex](x,y) =(-2,-16)[/tex]
[tex]-8\cdot a +4\cdot b -2\cdot c + d = -16[/tex] (1)
[tex](x,y) = (1,5)[/tex]
[tex]a+b+c+d= 5[/tex] (2)
[tex](x,y) = (3, 59)[/tex]
[tex]27\cdot a + 9\cdot b + 3\cdot c + d = 59[/tex] (3)
[tex](x,y) =(6,440)[/tex]
[tex]216\cdot a + 36\cdot b + 6\cdot c + d = 440[/tex] (4)
The solution of the system of linear equations is:
[tex]a = 2[/tex], [tex]b = 0[/tex], [tex]c = 1[/tex], [tex]d = 2[/tex]
The cubic regression that fits the points [tex](x,y) =(-2,-16)[/tex], [tex](x,y) = (1,5)[/tex], [tex](x,y) = (3, 59)[/tex] and [tex](x,y) =(6,440)[/tex] is [tex]y =2\cdot x^{3}+x+2[/tex].