Respuesta :
[tex]{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Initial \ velocity \ (u) = 13 \ m/s }[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Distance \ (s) = 400 \ m }[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{ Acceleration = 4 \ m/s^2}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{The \:Final \:velocity \:of \:the\: body }[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\[/tex]
☯ Using 3rd equation of motion
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ {v}^{2} = {u}^{2} +2as }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ {v}^{2} = {13}^{2} + 2 \times 4 \times 400 }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{{v}^{2} = 169 + 3200 }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ {v}^{2} = 3369 }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ v = \sqrt{3369} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \underline{\boxed{\sf{ v = 58.04 \: m/s }}}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\:Additional \:Information:-\:\:\:}}}} \\ \\ [/tex]
☢ Equations Of Motion
[tex]\\[/tex]
[tex]\boxed{
\begin{minipage}{3 cm}$\\
\sf{\:\:\star\:\:v = u +at} \\ \\
\sf{\:\:\star\:\:s = ut + \dfrac{1}{2}\:at^{2} }\\ \\
\sf{\:\:\star\:\:v^{2} = u^{2} + 2as}\\ \\
\sf{\:\:\star\:\:s = \dfrac{1}{2} (u + v)t}\\$
\end{minipage}
} [/tex]
[tex]\\[/tex]
[tex]\sf{Where,}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\textsf{v = Final velocity}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\textsf{u = Initial velocity}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\textsf{a = Acceleration}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\textsf{s = Distance}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\textsf{t = Time taken}[/tex]
Otras preguntas
