Respuesta :

leena

Hello! :)

[tex]\large\boxed{\frac{-e^{\frac{3}{x}} (3 + 2x )}{x^{4}}}[/tex]

Find the derivative using the quotient rule:

[tex]\frac{f(x)}{g(x)} = \frac{g(x) * f'(x) - f(x) * g'(x)}{(g(x))^{2}}[/tex]

In this instance:

[tex]f(x) = e^{\frac{3}{x} }\\\\g(x) = x^{2}[/tex]

Use the following properties to find the derivative of f(x) and g(x):

[tex]e^{u} = u' * e^{u}\\\\x^{n} = nx^{n-1}[/tex]

Use the quotient rule:

[tex]\frac{x^{2} * (e^{\frac{3}{x}} * (-3x^{-2})) - e^{\frac{3}{x}} * 2x }{(x^{2} )^{2}}[/tex]

Simplify the numerator:

[tex]\frac{(e^{\frac{3}{x}} * (-3)) - e^{\frac{3}{x}} * 2x }{(x^{2} )^{2}}[/tex]

Factor out [tex]e^{\frac{3}{x}}[/tex]

[tex]\frac{e^{\frac{3}{x}} (-3 - 2x )}{x^{4}}[/tex]

Factor out -1 from the numerator:

[tex]\frac{-e^{\frac{3}{x}} (3 + 2x )}{x^{4}}[/tex]

And we're done! Thanks for posting the question to my 1000th answer!

Space

Answer:

[tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2e^{\frac{3}{x}}}{x^3}[/tex]

General Formulas and Concepts:

Pre-Algebra

  • Splitting Fractions

Algebra I

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule:    [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]

Quotient Rule:      [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \frac{e^{\frac{3}{x}}}{x^2}\\f(x) = e^{\frac{3}{x}}\\g(x) = x^2[/tex]

Step 2: Differentiate

  1. Quotient Rule:                                                                                                [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{\frac{d}{dx}[e^{\frac{3}{x}}] \cdot x^2 - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
  2. Derivative Rule:                                                                                              [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{e^{\frac{3}{x}} \cdot \frac{-3}{x^2} \cdot x^2 - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
  3. [Simplify] Multiply:                                                                                           [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
  4. Basic Power Rule:                                                                                          [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2x^{2-1} \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
  5. [Simplify] Subtract Exponents:                                                                       [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2x \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
  6. [Simplify] Multiply:                                                                                           [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{(x^2)^2}[/tex]
  7. [Simplify] Exponent Rule:                                                                               [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{x^{2 + 2}}[/tex]
  8. [Simplify] Add Exponents:                                                                              [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{x^4}[/tex]
  9. [Simplify] Fraction Split:                                                                                  [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2xe^{\frac{3}{x}}}{x^4}[/tex]
  10. [Simplify - 2nd Fraction] Cancel Like Terms:                                                [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2e^{\frac{3}{x}}}{x^3}[/tex]

And we have our final answer!

ACCESS MORE