Respuesta :
Hello! :)
[tex]\large\boxed{\frac{-e^{\frac{3}{x}} (3 + 2x )}{x^{4}}}[/tex]
Find the derivative using the quotient rule:
[tex]\frac{f(x)}{g(x)} = \frac{g(x) * f'(x) - f(x) * g'(x)}{(g(x))^{2}}[/tex]
In this instance:
[tex]f(x) = e^{\frac{3}{x} }\\\\g(x) = x^{2}[/tex]
Use the following properties to find the derivative of f(x) and g(x):
[tex]e^{u} = u' * e^{u}\\\\x^{n} = nx^{n-1}[/tex]
Use the quotient rule:
[tex]\frac{x^{2} * (e^{\frac{3}{x}} * (-3x^{-2})) - e^{\frac{3}{x}} * 2x }{(x^{2} )^{2}}[/tex]
Simplify the numerator:
[tex]\frac{(e^{\frac{3}{x}} * (-3)) - e^{\frac{3}{x}} * 2x }{(x^{2} )^{2}}[/tex]
Factor out [tex]e^{\frac{3}{x}}[/tex]
[tex]\frac{e^{\frac{3}{x}} (-3 - 2x )}{x^{4}}[/tex]
Factor out -1 from the numerator:
[tex]\frac{-e^{\frac{3}{x}} (3 + 2x )}{x^{4}}[/tex]
And we're done! Thanks for posting the question to my 1000th answer!
Answer:
[tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2e^{\frac{3}{x}}}{x^3}[/tex]
General Formulas and Concepts:
Pre-Algebra
- Splitting Fractions
Algebra I
- Terms/Coefficients
- Factoring
- Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule: [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]
Quotient Rule: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \frac{e^{\frac{3}{x}}}{x^2}\\f(x) = e^{\frac{3}{x}}\\g(x) = x^2[/tex]
Step 2: Differentiate
- Quotient Rule: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{\frac{d}{dx}[e^{\frac{3}{x}}] \cdot x^2 - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
- Derivative Rule: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{e^{\frac{3}{x}} \cdot \frac{-3}{x^2} \cdot x^2 - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
- [Simplify] Multiply: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
- Basic Power Rule: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2x^{2-1} \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
- [Simplify] Subtract Exponents: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2x \cdot e^{\frac{3}{x}}}{(x^2)^2}[/tex]
- [Simplify] Multiply: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{(x^2)^2}[/tex]
- [Simplify] Exponent Rule: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{x^{2 + 2}}[/tex]
- [Simplify] Add Exponents: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{x^4}[/tex]
- [Simplify] Fraction Split: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2xe^{\frac{3}{x}}}{x^4}[/tex]
- [Simplify - 2nd Fraction] Cancel Like Terms: [tex]\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2e^{\frac{3}{x}}}{x^3}[/tex]
And we have our final answer!