Respuesta :

Answer:

[tex]f(x)=x^2+36[/tex]

Step-by-step explanation:

We want to find the equation in standard form for a polynomial that has zeros at x=6i and x=-6i.  

So, we will have the two factors:

[tex](x-(6i))\text{ and } (x-(-6i))[/tex]

So, our polynomial will be:

[tex]f(x)=(x-6i)(x+6i)[/tex]

Distribute:

[tex]f(x)=x(x+6i)-6i(x+6i)[/tex]

Distribute:

[tex]f(x)=x^2+6xi-6xi-36i^2[/tex]

Combine like terms:

[tex]f(x)=x^2-36i^2[/tex]

Remember that i²=-1. Hence:

[tex]f(x)=x^2-(-36)[/tex]

Simplify. So, our polynomial is:

[tex]f(x)=x^2+36[/tex]

ACCESS MORE