Respuesta :
[tex]{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before \: it \: comes \: to \: rest \:( s_{2} )}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity = v\:m/s} \\\\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \: s_{1} \: penetration = \dfrac{v}{2} \:m/s} \\\\ [/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{s_{1} = \dfrac{3}{100} = 0.03 \: m}[/tex]
[tex]\\[/tex]
☯ As we know that,
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ {v}^{2} = {u}^{2} + 2as }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ \bigg(\dfrac{v}{2} \bigg)^{2} = {v}^{2} + 2a s_{1}}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4} = {v}^{2} + 2 \times a \times 0.03 }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4} - {v}^{2} = 0.06 \times a }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{\dfrac{ - 3{v}^{2} }{4} = 0.06 \times a }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{a = \dfrac{ - 3 {v}^{2} }{4 \times 0.06} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ a = \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }[/tex]
[tex]\\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{ Initial\:velocity=v\:m/s} \\\\ [/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ {v}^{2} = {u}^{2} + 2as}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{{0}^{2} = {v}^{2} + 2 \times \dfrac{ - 25 {v}^{2} }{2} \times s }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ - {v}^{2} = - 25 {v}^{2} \times s }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ s = \dfrac{ - {v}^{2} }{ - 25 {v}^{2} }}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ s = \dfrac{1}{25} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ s = 0.04 \: m }[/tex]
[tex]\\[/tex]
☯ For left penetration (s₂)
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{s = s_{1} + s_{2} }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ 0.04 = 0.03 + s_{2}}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}[/tex]
[tex]\\[/tex]
[tex]\star\:\sf{Left \: penetration \: before \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\ [/tex]