Respuesta :
Answer:
2.15 m
Explanation:
Newton's Law of Universal Gravitation:
[tex]\displaystyle F_g = G \frac{m_1 m_2}{r^2}[/tex]
- [tex]\displaystyle F_g[/tex] is the gravitational force of attraction
- [tex]\displaystyle G[/tex] is the universal gravitational constant
- [tex]m_1[/tex] and [tex]m_2[/tex] are the two masses of the two objects
- [tex]\displaystyle r[/tex] is the distance between the centers of the two objects.
List the known values:
- [tex]\displaystyle F_g = 3.47 \cdot 10^-^8 \ \text{N}[/tex]
- [tex]\displaystyle G = 6.673 \cdot 10^-^1^1 \ \frac{Nm^2}{kg^2}[/tex]
- [tex]\displaystyle m_1 = 44.8 \ \text{kg} \\ m_2 = 53.9 \ \text{kg}[/tex]
- [tex]\displaystyle r =\ ?[/tex]
Plug these values into the equation:
- [tex]\displaystyle 3.47 \cdot 10^-^8 \ \text{N} = 6.673 \cdot 10^-^1^1 \ \frac{Nm^2}{kg^2} \frac{(44.8 \ \text{kg})(53.9 \ \text{kg})}{r^2}[/tex]
Notice that the units [tex]\displaystyle \text{N}[/tex], [tex]\displaystyle \text{kg}^2[/tex], and [tex]\displaystyle \text{m}[/tex] cancel out. We are left with the unit [tex]\displaystyle \text{m}[/tex] for radius r.
Get rid of the units to make the problem easier to read.
- [tex]\displaystyle 3.47 \cdot 10^-^8= 6.673 \cdot 10^-^1^1 \ \frac{(44.8)(53.9) \ }{r^2}[/tex]
Multiply the masses together.
- [tex]\displaystyle 3.47 \cdot 10^-^8= 6.673 \cdot 10^-^1^1 \ \frac{(2414.72)}{r^2}[/tex]
Multiply the gravitational constant and the masses together.
- [tex]\displaystyle 3.47 \cdot 10^-^8= \frac{1.61134265\cdot 10^-^7}{r^2}[/tex]
Solve for [tex]r^2[/tex] by dividing both sides by 3.47 * 10^(-8) and moving [tex]r^2[/tex] to the left.
- [tex]\displaystyle r^2 = \frac{1.61134265\cdot 10^-^7}{3.47\cdot 10^-^8}[/tex]
- [tex]r^2 = 4.64363876[/tex]
Take the square root of both sides.
- [tex]r=2.154910383[/tex]
The students are sitting about 2.15 m apart from each other.