Respuesta :

leena

Hi there!

[tex]\large\boxed{x = \frac{24z}{(18 + yz)} }[/tex]

We can begin solving by creating a common denominator:

x · 3 · z = 3xz. This is the denominator that all of the numerators must have in order to work with the fractions.

Multiply each numerator by the missing parts of the common denominator:

[tex]\frac{8 * 3 * z}{3xz} - \frac{y * x * z}{3xz} = \frac{6 * 3 * x}{3xz}[/tex]

Simplify:

[tex]\frac{24z}{3xz} - \frac{yxz}{3xz} = \frac{18x}{3xz}[/tex]

Move all the fractions involving x in the numerator to the right-hand side of the equation:

[tex]\frac{24z}{3xz} = \frac{18x}{3xz} + \frac{yxz}{3xz}[/tex]

Combine fractions:

[tex]\frac{24z}{3xz} = \frac{18x + yxz}{3xz}[/tex]

Multiply both sides by 3xz:

[tex]24z = 18x + yxz[/tex]

Factor out "x" from the terms on the right-hand side:

[tex]24z = x(18 + yz)[/tex]

Divide both sides by (18 + yz)

[tex]\frac{24z}{(18 + yz)} = x[/tex]