Respuesta :
Answer:
Part A)
[tex]\displaystyle V=\frac{1}{12}\pi h^3[/tex]
Part B)
[tex]\displaystyle \frac{dV}{dt}=\frac{1}{4}\pi h^2\frac{dh}{dt}[/tex]
Part C)
[tex]\displaystyle \frac{dh}{dt}\approx0.4\text{ feet per second}[/tex]
Step-by-step explanation:
Please refer to the attachment.
We know that the conical tank has a height of 10 feet and a radius of 5 feet.
The rate at which water is being drained through a hole in the vertex is 5 cubic feet per second.
Part A)
Recall the volume formula for a cone:
[tex]\displaystyle V=\frac{1}{3}\pi r^2h[/tex]
Since this is a cone, we can draw two similar triangles (refer to the attachment). Then, by properties of similar triangles, we can write:
[tex]\displaystyle \frac{10}{5}=\frac{h}{r}[/tex]
Therefore:
[tex]\displaystyle 2=\frac{h}{r}[/tex]
So:
[tex]\displaystyle r=\frac{h}{2}[/tex]
Substituting this into our formula yields:
[tex]\displaystyle V=\frac{1}{3}\pi \big( \frac{h}{2} \big)^2h[/tex]
Simplify:
[tex]\displaystyle V=\frac{1}{12}\pi h^3[/tex]
Part B)
Let’s take the derivative of both sides with respect to t. So:
[tex]\displaystyle\frac{d}{dt}\big[V\big]=\frac{d}{dt}\big[\frac{1}{12}\pi h^3}\big][/tex]
The left will simply be dV/dt. We can move the coefficient from the right:
[tex]\displaystyle \frac{dV}{dt}=\frac{1}{12}\pi\frac{d}{dt}\big[h^3\big][/tex]
Implicitly differentiate:
[tex]\displaystyle \frac{dV}{dt}=\frac{1}{12}\pi(3h^2\frac{dh}{dt})[/tex]
Simplify. So, our derivative is:
[tex]\displaystyle \frac{dV}{dt}=\frac{1}{4}\pi h^2\frac{dh}{dt}[/tex]
Part C)
We want to find the rate of change of the water depth (in other words, dh/dt) when h=4.
Since our water is being drained at a rate of 5 cubic feet per second, this means that dV/dt=5.
So, substituting, we get:
[tex]\displaystyle 5=\frac{1}{4}\pi(4)^2\frac{dh}{dt}[/tex]
Simplify:
[tex]\displaystyle 5=4\pi\frac{dh}{dt}[/tex]
Therefore:
[tex]\displaystyle \frac{dh}{dt}=\frac{5}{4\pi}\approx0.3978\approx 0.40[/tex]
So, the change of the water depth is about 0.4 feet per second.
![Ver imagen xKelvin](https://us-static.z-dn.net/files/dd5/089d73d34ec2155694f9aa6a0ba9b538.jpeg)