Gina Wilson unit 8 homework 2 correct responses are;
- x = 13, y = 13·√2
- x = y = 15·√2
- x = 6, y = 3·√3
- x = 17·√3, y = 17
- x = y = 10
- x = 50, y = 25
- x = y = 2·√7
- x = 16·√3, y = 8·√3
- x = 11·√3, y = 33
- x = 3·√2, y = 3·√6
- x = √10, y = 2·√10
- x = 4·√7, y = 8·√7
- x = 17·√3, y = 34·√2, z = 34
- x = 18·√3, y = 18, z = 9
- x = 14·√2, y = 7, z = 7·√3
- x = 8·√3, y = z = 12·√2
- x = 26·√3, y = 13·√3, z = 39·√2
- [tex]\displaystyle x = \frac{20 \cdot \sqrt{3} }{3}[/tex], [tex]\displaystyle y = \frac{10 \cdot \sqrt{3} }{3}[/tex], z = 10·√2
- x = 6, y = 12, 12·√2
- x = 10·√(12), y = 30, z = 5·√12
- The perimeter of the triangle = 24·√5
- The perimeter of the square = 56·√2
- 6.25 feet
- 75·√2 ft./s
Methods used to arrive at the above responses:
Background information;
The trigonometric ratios used to find the lengths of the sides of the given right triangles are;
[tex]\displaystyle sin(30^{\circ}) = \mathbf{\frac{1}{2}}[/tex]
[tex]\displaystyle cos(30^{\circ}) = \mathbf{\frac{\sqrt{3} }{2}}[/tex]
[tex]\displaystyle sin(60^{\circ}) = \mathbf{\frac{\sqrt{3} }{2}}[/tex]
[tex]\displaystyle cos(30^{\circ}) = \mathbf{\frac{\sqrt{3} }{2}}[/tex]
Solution:
1. The given triangle is a right triangle, and one of the interior angles is 45°, we have that the length of the legs are equal
Therefore, x = 13
By Pythagorean theorem, we have;
y = √(13² + 13²) = 13·√2
2. x = y
30² = x² + y² = 2·x²
x = √(30² ÷ 2) = 15·√2 = y
[tex]3. {} \hspace {0.3 cm}\displaystyle cos(60^{\circ}) = \frac{1}{2} = \mathbf{\frac{3}{x}}[/tex]
x = 3 × 2 = 6
y = √(6² - 3²) = 3·√3
[tex]4. \ \displaystyle sin(30^{\circ}) = \frac{1}{2} = \mathbf{\frac{y}{34}}[/tex]
34 = 2·y
y = 17
x = √(34² - 17²) = 17·√3
5. x = y
10·√2 = √(x² + y²) = √(x² + x²) = x·√2
Therefore; x = 10 = y
[tex]6. {} \hspace{0.75cm} \displaystyle \frac{25 \cdot \sqrt{3} }{x} = \mathbf{\frac{\sqrt{3} }{2}}[/tex]
2 × 25·√3 = x·√3
x = 50
[tex]\displaystyle \frac{y}{50} = \frac{1}{2}[/tex]
y = 25
7. x = y
x·√2 = 2·√14
x = √2·√14 = √28 = 2·√7 = y
[tex]8. {} \hspace{0.75cm} \displaystyle \frac{24 }{x} = \frac{\sqrt{3} }{2}[/tex]
48 = x·√3
x = 16·√3
y = 8·√3
9. x = 22·√3 ÷ 2 = 11·√3
y × 2 = √3 × 22·√3 = 66
y = 66 ÷ 2 = 33
10. y = 2 × √6 = 2·√6
2·x = √3 × 2·√6
x = √3 × √6 = 3·√2
11. x = √10
y = √(10 + 10) = 2·√10
12. 4·√(21) × 2 = y·√3
y = 8·√7
x = 4·√7
13. √3 × 34 = x × 2
x = 17·√3
z = 34
y = 34·√2
14. x × √3 = 27 × 2
x = 3 × 9 × 2 ÷ √3 = 18·√3
y·√3 = 9·√3 × 2
y = 18
z = 9
15. x = 14·√2
y = 7
z × 2 = 14 ×√3
z = 7·√3
16. x = 8·√3
16·√3 × √3 = a × 2
a = 24 (The length of the side common to both triangles)
z = y
Therefore;
y·√2 = 24
y = 24 ÷ √2 = 12·√2 = z
17. z = 39·√2
x·√3 = 39 × 2
x = 26·√3
y = 13·√3
18. z·√2 = 20
z = 10·√2
x × √3 = 10 × 2
x = 20 ÷ √3
[tex]\displaystyle x = \frac{20}{\sqrt{3} } = \underline{\frac{20 \cdot \sqrt{3} }{3}}[/tex]
y = 10 ÷ √3
[tex]\displaystyle \underline{ y = \frac{10 \cdot \sqrt{3} }{3}}[/tex]
19. x = 6
y = 12
z = 12·√2
20. z·√2 = 10·√6
z = 5·√12
x = 10·√12
y = 10·√12 × √3 ÷ 2 = 30
21. 4·√15 × 2 = s×√3
s = 8·√5
s = The length of one side of the equilateral triangle (all angles are 60°)
The perimeter of the equilateral triangle = 3 × s = 3 × 8·√5 = 24·√5
22. s·√2 = 28
s = The length of a side of the square
s = 14·√2
The perimeter = 4 × 14·√2 = 56·√2
23. The length of the ramp = 2 × 37.5 inches = 75 inches
75 inches = 75 inches ÷ 12 inches/feet = 6.25 feet
24. The length of the sides of the infield of the baseball field = 90 feet
The distance from third to first base = The diagonal of the infield = 90·√2 ft.
The horizontal speed of the ball, v = 90·√2 ft. ÷ 1.2 s = 75·√2 ft./s
Learn more about trigonometric ratios here:
https://brainly.com/question/17151584