Answer:
Area of triangle B is 112 cm²
Option A is correct option.
Step-by-step explanation:
The dimensions of triangle B are twice the dimensions of triangle A.
Area of triangle A = 28 cm²
We need to find area of triangle B
We know that if base = b and height = h for triangle A
The area of triangle A will be: [tex]Area_A=\frac{1}{2}\times b \times h[/tex]
The dimensions for triangle B will be:
[tex]h_B = 2 h_A\\b_B = 2 b_A[/tex]
Putting in formula we get:
[tex]Area_B=\frac{1}{2}\times b\times h \\Area_B=\frac{1}{2}\times (2b)\times 2(h)\\Area_B=4( \frac{1}{2}\times b\times h)\\Area_B=4(Area_A)[/tex]
SO, we get [tex]Area_B=4(Area_A)\\[/tex]
We have Area_A = 28 cm²
Area of triangle B Area _B is:
[tex]Area_B=4(28)\\Area_B=112\:cm^2[/tex]
So, Area of triangle B is 112 cm²
Option A is correct option.