Answer:
The coordinates of the flower bed are ([tex]-\frac{1}{3}[/tex] , 3)
Step-by-step explanation:
To find the centroid of a triangle, use this rule centroid = ([tex]\frac{x1+x2+x3}{3},\frac{y1+y2+y3}{3}[/tex]), where (x1, y1), (x2, y2), (x3, y3) are the vertices of the triangle
∵ The vertices of the triangle are (1, 1), (1, 4), (-3, 4)
∴ x1 = 1 and y1 = 1
∴ x2 = 1 and y2 = 4
∴ x3 = -3 and y3 = 4
→ Substitute them in the rule above
∵ Centroid = ([tex]\frac{1+1+-3}{3},\frac{1+4+4}{3}[/tex])
∴ Centroid = ([tex]\frac{-1}{3},\frac{9}{3}[/tex])
∴ Centroid = ([tex]-\frac{1}{3}[/tex] , 3)
∴ The coordinates of the flower bed are ([tex]-\frac{1}{3}[/tex] , 3)