Write an explicit formula that represents the sequence defined by the following recursive formula
HELP IM TIMED

Answer:
The explicit formula is a[tex]_{n}[/tex] = 5 - 6n
Step-by-step explanation:
The explicit formula of the arithmetic sequence of the recursive formula
a[tex]_{1}[/tex] = first term; a[tex]_{n}[/tex] = a[tex]_{n-1}[/tex] + d is a[tex]_{n}[/tex] = a + (n - 1)d, where
∵ The recursive formula is a[tex]_{1}[/tex] = -1 and a[tex]_{n}[/tex] = a[tex]_{n-1}[/tex] - 6
→ Compare it with the formula above
∴ a = -1 ⇒ 1st term
∴ d = -6 ⇒ common difference
→ Substitute them in the form of the explicit formula
∵ a[tex]_{n}[/tex] = -1 + (n - 1)(-6)
∴ a[tex]_{n}[/tex] = -1 + (-6)(n) - (-6)(1)
∴ a[tex]_{n}[/tex] = -1 + -6n - (-6)
∴ a[tex]_{n}[/tex] = -1 - 6n + 6
→ Add the like term
∴ a[tex]_{n}[/tex] = 5 - 6n
∴ The explicit formula is a[tex]_{n}[/tex] = 5 - 6n