Answer:
[tex]PQ = 8.83[/tex]
Step-by-step explanation:
Given
[tex]P = (8,1,4)[/tex]
[tex]Q = (3,8,6)[/tex]
Required
Determine distance PQ
This is calculated as:
[tex]PQ = \sqrt{(x_2- x_1)^2+(y_2- y_1)^2+(z_2- z_1)^2}[/tex]
Where
[tex](x_1,y_1,z_1) = (8,1,4)[/tex]
and
[tex](x_2,y_2,z_2) = (3,8,6)[/tex]
So, we have:
[tex]PQ = \sqrt{(3- 8)^2+(8- 1)^2+(6- 4)^2}[/tex]
[tex]PQ = \sqrt{-5^2+7^2+2^2}[/tex]
[tex]PQ = \sqrt{25+49+4}[/tex]
[tex]PQ = \sqrt{78}[/tex]
[tex]PQ = 8.83[/tex]