An engineer must design a rectangular box that has a volume of 9 m3 and that has a bottom whose length is twice its width. What are the dimensions of the box so that the total surface area (of all six sides) of the box is minimized

Respuesta :

Answer:

[tex]Length =3[/tex]   [tex]Height = 2[/tex]   and  [tex]Width = \frac{3}{2}[/tex]

Explanation:

Given

[tex]Volume = 9m^3[/tex]

Represent the height as h, the length as l and the width as w.

From the question:

[tex]Length = 2 * Width[/tex]

[tex]l = 2w[/tex]

Volume of a box is calculated as:

[tex]V = l*w*h[/tex]

This gives:

[tex]V = 2w *w*h[/tex]

[tex]V = 2w^2h[/tex]

Substitute 9 for V

[tex]9 = 2w^2h[/tex]

Make h the subject:

[tex]h = \frac{9}{2w^2}[/tex]

The surface area is calculated as:

[tex]A = 2(lw + lh + hw)[/tex]

Recall that: [tex]l = 2w[/tex]

[tex]A = 2(2w*w + 2w*h + hw)[/tex]

[tex]A = 2(2w^2 + 2wh + hw)[/tex]

[tex]A = 2(2w^2 + 3wh)[/tex]

[tex]A = 4w^2 + 6wh[/tex]

Recall that: [tex]h = \frac{9}{2w^2}[/tex]

So:

[tex]A = 4w^2 + 6w * \frac{9}{2w^2}[/tex]

[tex]A = 4w^2 + 6* \frac{9}{2w}[/tex]

[tex]A = 4w^2 + \frac{6* 9}{2w}[/tex]

[tex]A = 4w^2 + \frac{3* 9}{w}[/tex]

[tex]A = 4w^2 + \frac{27}{w}[/tex]

To minimize the surface area, we have to differentiate with respect to w

[tex]A' = 8w - 27w^{-2}[/tex]

Set A' to 0

[tex]0 = 8w - 27w^{-2}[/tex]

Add [tex]27w^{-2}[/tex] to both sides

[tex]27w^{-2} = 8w[/tex]

Multiply both sides by [tex]w^2[/tex]

[tex]27w^{-2}*w^2 = 8w*w^2[/tex]

[tex]27 = 8w^3[/tex]

Make [tex]w^3[/tex] the subject

[tex]w^3 = \frac{27}{8}[/tex]

Solve for w

[tex]w = \sqrt[3]{\frac{27}{8}}[/tex]

[tex]w = \frac{3}{2}[/tex]

Recall that : [tex]h = \frac{9}{2w^2}[/tex]   and [tex]l = 2w[/tex]

[tex]h = \frac{9}{2 * \frac{3}{2}^2}[/tex]

[tex]h = \frac{9}{2 * \frac{9}{4}}[/tex]

[tex]h = \frac{9}{\frac{9}{2}}[/tex]

[tex]h = 9/\frac{9}{2}[/tex]

[tex]h = 9*\frac{2}{9}[/tex]

[tex]h= 2[/tex]

[tex]l = 2w[/tex]

[tex]l = 2 * \frac{3}{2}[/tex]

[tex]l = 3[/tex]

Hence, the dimension that minimizes the surface area is:

[tex]Length =3[/tex]   [tex]Height = 2[/tex]   and  [tex]Width = \frac{3}{2}[/tex]

RELAXING NOICE
Relax