If possible, complete the equation below that uses the law of cosines to find the remaining side of the triangle.

Answer:
Option C.
a = 20.3
Step-by-step explanation:
Given:
m<A = 32°
a = ??
b = 16
c = 32
Required:
Find a
SOLUTION;
To find the missing side, a, of the triangle, apply the Law of Cosines, [tex] a^2 = b^2 + c^2 - 2bcCosA [/tex]
Plug in the values into the equation:
[tex] a^2 = 16^2 + 32^2 - 2(16)(32)Cos32 [/tex]
[tex] a^2 = 1,280 - 1,024*Cos32 [/tex]
[tex] a^2 = 1,280 - 868.40125 [/tex]
[tex] a^2 = 411.59875 [/tex]
[tex] a = \sqrt{411.59875} [/tex]
[tex] a = 20.3 [/tex] (nearest tenth)