Answer:
[tex]\mathbf{G(x) = (1 + x)^{29}}[/tex]
Step-by-step explanation:
From the given information;
The total number of beads = 10 + 8 + 11 = 29
To choose k beads out 29 beads, let assume that [tex]t_k[/tex] be the no. such that:
[tex]t_k = ( ^{29}_{k}) \ \ \ where; k =0,1,2,3,....,29[/tex]
∴
The sequence [tex]\{ t_k\}^{29}_{k=0} = (^{29}_{k})[/tex]
The generating function for [tex]\{ a_k \}^n_{k=0}[/tex] is:
[tex]G(x) = a_o +a_1x +a_2x^2 +...+a_nx^n[/tex]
[tex]G(x) = \sum \limits ^{n}_{k=0} \ a_k x^k[/tex]
For the sequence above;
[tex]G(x) = \sum \limits ^{29}_{k =0 } (^{29}_{k}) x^k[/tex]
By applying binomial series [tex](1+x)^n = \sum \limits ^n_{k=0} ( ^n_k) x^k[/tex]
Thus:
[tex]\mathbf{G(x) = (1 + x)^{29}}[/tex]