A sample of 29 boxes of cereal has a sample standard deviation of 0.81 ounces. Construct a 95% confidence interval to estimate the true standard deviation of the filling process for the boxes of cereal.
a. ( 0.427,1.144)
b. (0.515,1.105)
c. (0.726,0.726)

Respuesta :

Answer:

The 95% confidence interval is   [tex]0.6428 < \sigma < 1.0954[/tex]

Step-by-step explanation:

From the question we are told that

   The sample size is  n = 29

    The sample standard deviation is [tex]s = 0.81[/tex]

  Generally the 95% confidence interval to estimate the true standard deviation  is mathematically represented as  

                      [tex]\sqrt{\frac{(n- 1)s^2 }{ X^2_( \frac{\alpha }{2 } , n-1)} } < \sigma < \sqrt{\frac{(n- 1)s^2 }{ X^2_(1- \frac{\alpha }{2 } , n-1)} }[/tex]

Generally from the  chi -distribution table  the critical value of [tex]\frac{\alpha }{2}[/tex] at a degree of freedom of  [tex]df = 29 - 1 = 28[/tex]  is  

            [tex]X^2 _{\frac{\alpha }{2} , 28 } =44.46079184[/tex]

Generally from the  chi -distribution table  the critical value of [tex]1 - \frac{\alpha }{2}[/tex] at a degree of freedom of  [tex]df = 29 - 1 = 28[/tex]  is  

             [tex]X^2 _{(1 - \frac{\alpha }{2}) , 28 } = 15.30786055[/tex]

So

                 [tex]\sqrt{\frac{(29- 1)0.81^2 }{ 44.46079184 } } < \sigma < \sqrt{\frac{(29- 1)0.81^2 }{15.315.307860551 }[/tex]

=>              [tex]0.6428 < \sigma < 1.0954[/tex]

ACCESS MORE