Answer:
The 95% confidence interval is [tex]0.6428 < \sigma < 1.0954[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 29
The sample standard deviation is [tex]s = 0.81[/tex]
Generally the 95% confidence interval to estimate the true standard deviation is mathematically represented as
[tex]\sqrt{\frac{(n- 1)s^2 }{ X^2_( \frac{\alpha }{2 } , n-1)} } < \sigma < \sqrt{\frac{(n- 1)s^2 }{ X^2_(1- \frac{\alpha }{2 } , n-1)} }[/tex]
Generally from the chi -distribution table the critical value of [tex]\frac{\alpha }{2}[/tex] at a degree of freedom of [tex]df = 29 - 1 = 28[/tex] is
[tex]X^2 _{\frac{\alpha }{2} , 28 } =44.46079184[/tex]
Generally from the chi -distribution table the critical value of [tex]1 - \frac{\alpha }{2}[/tex] at a degree of freedom of [tex]df = 29 - 1 = 28[/tex] is
[tex]X^2 _{(1 - \frac{\alpha }{2}) , 28 } = 15.30786055[/tex]
So
[tex]\sqrt{\frac{(29- 1)0.81^2 }{ 44.46079184 } } < \sigma < \sqrt{\frac{(29- 1)0.81^2 }{15.315.307860551 }[/tex]
=> [tex]0.6428 < \sigma < 1.0954[/tex]