Answer:
[tex]1\ \text{W/m}^2[/tex]
[tex]0.0039\ \text{W/m}^2[/tex]
Explanation:
[tex]I_1[/tex] = Intensity of sound at 2 m away
Sound level = 120 dB
[tex]r_1[/tex] = 2 m
[tex]r_2[/tex] = 32 m
[tex]I_0[/tex] = Threshold of sound = [tex]10^{-12}\ \text{W/m}^2[/tex]
Sound level is given by
[tex]dB=10\log (\dfrac{I_1}{I_0})\\\Rightarrow I_1=10^{\dfrac{dB}{10}}I_0\\\Rightarrow I_1=10^{\dfrac{120}{10}}\times 10^{-12}\\\Rightarrow I_1=1\ \text{W/m}^2[/tex]
The intensity of sound at 2 m away is [tex]1\ \text{W/m}^2[/tex]
[tex]I_1=\dfrac{P}{4\pi r^2}[/tex]
[tex]I\propto \dfrac{1}{r^2}[/tex]
[tex]\dfrac{I_1}{I_2}=\dfrac{r_2^2}{r_1^2}\\\Rightarrow I_2=\dfrac{I_1r_1^2}{r_2^2}\\\Rightarrow I_2=\dfrac{1\times 2^2}{32^2}\\\Rightarrow I_2=0.0039\ \text{W/m}^2[/tex]
The intensity of the sound 32 m away is [tex]0.0039\ \text{W/m}^2[/tex]