Respuesta :

Answer:

1) ΔACD is a right triangle at C

=> sin 32° = AC/15

⇔ AC = sin 32°.15 ≈ 7.9 (cm)

2) ΔABC is a right triangle at C, using Pythagoras theorem, we have:

AB² = AC² + BC²

⇔ AB² = 7.9² + 9.7² = 156.5

⇒ AB = 12.5 (cm)

3)  ΔABC is a right triangle at C

=> sin ∠BAC = BC/AB

⇔ sin ∠BAC = 9.7/12.5 = 0.776

⇒ ∠BAC ≈ 50.9°

4) ΔACD is a right triangle at C

=> cos 32° = CD/15

⇔ CD = cos32°.15

⇒ CD ≈ 12.72 (cm)

Step-by-step explanation:

ACCESS MORE