Answer:
[tex]N = 5040[/tex]
Step-by-step explanation:
Required
Arrange the letters of "sleepless"
First, we count the number (n) of characters
[tex]n = 9[/tex]
First, we count the number (n) of repeated characters
[tex]s = 3[/tex]
[tex]e = 3[/tex]
[tex]l = 2[/tex]
The arrangement (N) is then calculated as follows;
[tex]N = \frac{n!}{s!e!l!}[/tex]
This gives:
[tex]N = \frac{9!}{3!3!2!}[/tex]
[tex]N = \frac{9*8*7*6*5*4*3*2*1}{3*2*1*3*2*1*2*1}[/tex]
[tex]N = \frac{362880}{72}[/tex]
[tex]N = 5040[/tex]
Hence, there are 5040 distinct arrangements