Respuesta :

Answer:

[tex]N = 5040[/tex]

Step-by-step explanation:

Required

Arrange the letters of "sleepless"

First, we count the number (n) of characters

[tex]n = 9[/tex]

First, we count the number (n) of repeated characters

[tex]s = 3[/tex]

[tex]e = 3[/tex]

[tex]l = 2[/tex]

The arrangement (N) is then calculated as follows;

[tex]N = \frac{n!}{s!e!l!}[/tex]

This gives:

[tex]N = \frac{9!}{3!3!2!}[/tex]

[tex]N = \frac{9*8*7*6*5*4*3*2*1}{3*2*1*3*2*1*2*1}[/tex]

[tex]N = \frac{362880}{72}[/tex]

[tex]N = 5040[/tex]

Hence, there are 5040 distinct arrangements

ACCESS MORE