In the diagram below, AABC~ ADEC. What is the value of x?
![In the diagram below AABC ADEC What is the value of x class=](https://us-static.z-dn.net/files/d8c/d1d8b1ca499a3c7e5d5eb2fac6f8f785.png)
Answer:
x = 6
Step-by-step explanation:
It's given that triangles ABC & DEC are similar . Hence their corresponding similar sides will be proportional to each other.
[tex] = > \frac{ab}{de} = \frac{bc}{ce} = \frac{ac}{dc} [/tex]
[tex] = > \frac{ab}{de} = \frac{21}{7} = \frac{24 - x}{x} [/tex][tex] = > \frac{24 - x}{x} = \frac{21}{7} [/tex]
[tex] = > \frac{24 - x}{x} = \frac{21}{7} [/tex]
[tex] = > \frac{24 - x}{x} = 3[/tex]
[tex] = > 24 - x = 3x[/tex]
[tex] = > 4x = 24[/tex]
[tex] = > x = \frac{24}{4} = 6[/tex]