Answer:
[tex]31.32\ m/s[/tex]
Explanation:
[tex]We\ are\ given\ that:\\Height\ to\ which\ there're\ lifted=50m\\Displacement\ during\ the\ descent=50m\\Now,\\In\ order\ to\ find\ the\ velocity\ of\ the\ customers\ at\ 50\ m,\\We\ can\ use\ the\ Third\ Equation\ Of\ Motion,\ which is:\\2as=v^2-u^2\\As\ we\ know\ that,\\Acceleration\ due\ to\ gravity=9.81\ m/s^2\ or\ roughly\ 10\ m/s^2\\Displacement=50\ m\\Initial\ velocity=0\ m/s^2\\ [As\ they\ stop\ when\ they\ reach\ the\ maximum\ height\ of\ 50\ m\\ and\ begin\ their\ descent][/tex]
[tex]By\ reconstructing\ the\ Third\ Equation\ Of\ Motion,\ we\ have:\\2gs=v^2\\Hence,\\v^2=2*9.81*50 \\v^2=981\ m^2/s^2 \\v=\sqrt{981\ m^2/s^2} \\v=31.32\ m/s[/tex]