Answer:
We get t= 7.22 and t=0.28
The correct options are Option A and Option G
Step-by-step explanation:
The height h of toy rocket at time t seconds after launch is given by the equation [tex]h(t) = -16t^2 + 120t + 8[/tex]
We need to find how many seconds until the rocket is 40 feet?
We are given height of rocket h(t) = 40 feet
and we need to find time t
Using the equation [tex]h(t) = -16t^2 + 120t + 8[/tex] we can find time t
We have h(t)=40
[tex]h(t) = -16t^2 + 120t + 8\\Put\:h(t)=40\\40= -16t^2 + 120t + 8\\16t^2-120t-8+40=0\\16t^2-120t+32=0[/tex]
Now, we will solve the quadratic equation using quadratic formula: [tex]t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
We have a =16, b=-120 and c=32
Putting values and finding t
[tex]t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\t=\frac{-(-120)\pm\sqrt{(-120)^2-4(16)(32)}}{2(16)}\\t=\frac{120\pm\sqrt{14400-2048}}{32}\\t=\frac{120\pm\sqrt{12352}}{32}\\t=\frac{120\pm111.12}{32}\\t=\frac{120+111.12}{32}, t=\frac{120-111.12}{32}\\t=7.22\:,\:t=0.28[/tex]
So, we get t= 7.22 and t=0.28
The correct options are Option A and Option G