Respuesta :
Answer:
See Explanation.
General Formulas and Concepts:
Pre-Algebra
- Distributive Property
- Equality Properties
Algebra I
- Combining Like Terms
Algebra II
- Exponential Rules
Pre-Calculus
- Pythagorean Identities: tan²(x) = sec²(x) - 1
Calculus
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration Rule 1: [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]
Integration Rule 2: [tex]\int {f(x) \pm g(x)} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Integration 1: [tex]\int {sec^2(u)} \, du = tan(u) + C[/tex]
Integration by Parts: [tex]\int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
[tex]\int {sec^n(u)} \, du[/tex]
Step 2: Rewrite
- [Integral - Alg] Separate Exponents: [tex]\int {sec^n(u)} \, du = \int {sec^{n-2}(u)sec^2(u)} \, du[/tex]
Step 3: Identify Variables
Using LIPET, we define variables to use IBP.
Use Integration 1.
[tex]u = [sec(u)]^{n-2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^{n-3} sec(u)tan(u) \ \ \ \ \ \ \ \ v = tan(u)[/tex]
Step 4: Integrate
- Integrate [IBP]: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan(u)(n-2)[sec(u)]^{n-3}sec(u)tan(u)} ]\, du[/tex]
- [Integral - Alg] Multiply: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan^2(u)(n-2)[sec(u)]^{n-2}}] \, du[/tex]
- [integral - Int Rule 1] Simplify: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{tan^2(u)[sec(u)]^{n-2}}] \, du[/tex]
- [Integral - Pythagorean Identities] Rewrite: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{[sec^2(u) - 1][sec(u)]^{n-2}}] \, du[/tex]
- [Integral - Alg] Multiply/Distribute: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{sec^n(u)-[sec(u)]^{n-2}}] \, du[/tex]
- [Integral - Int Rule 2] Rewrite: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^{n-2}} \, du ][/tex]
- [Integral - Alg] Distribute: [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
- Rewrite: [tex]\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
- [Integral - Alg] Isolate Integral Term: [tex]\int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
- [Integral - Alg] Combine Like Terms: [tex](n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
- [Integral 2 - Alg] Rewrite: [tex](n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {sec^{n-2}(u)} \, du[/tex]
- [Integral - Alg] Isolate Original Integral: [tex]\int {sec^n(u)} \, du = \frac{sec^{n-2}(u)tan(u)}{n-1} + \frac{n-2}{n-1} \int {sec^{n-2}(u)} \, du[/tex]
And we have proved the Reduction Formula!