xKelvin
contestada

Verify the following reduction formula:
[tex]\displaystyle \int \sec^n(u)\, du=\frac{\sec^{n-2}(u)\tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du, \; n\neq 1[/tex]

Respuesta :

Space

Answer:

See Explanation.

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property
  • Equality Properties

Algebra I

  • Combining Like Terms

Algebra II

  • Exponential Rules

Pre-Calculus

  • Pythagorean Identities: tan²(x) = sec²(x) - 1

Calculus

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration Rule 1:         [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]

Integration Rule 2:        [tex]\int {f(x) \pm g(x)} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration 1:                 [tex]\int {sec^2(u)} \, du = tan(u) + C[/tex]

Integration by Parts:    [tex]\int {u} \, dv = uv - \int {v} \, du[/tex]

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

Step 1: Define

[tex]\int {sec^n(u)} \, du[/tex]

Step 2: Rewrite

  1. [Integral - Alg] Separate Exponents:                    [tex]\int {sec^n(u)} \, du = \int {sec^{n-2}(u)sec^2(u)} \, du[/tex]

Step 3: Identify Variables

Using LIPET, we define variables to use IBP.

Use Integration 1.

[tex]u = [sec(u)]^{n-2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^{n-3} sec(u)tan(u) \ \ \ \ \ \ \ \ v = tan(u)[/tex]

Step 4: Integrate

  1. Integrate [IBP]:   [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan(u)(n-2)[sec(u)]^{n-3}sec(u)tan(u)} ]\, du[/tex]
  2. [Integral - Alg] Multiply:                  [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan^2(u)(n-2)[sec(u)]^{n-2}}] \, du[/tex]
  3. [integral - Int Rule 1] Simplify:     [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{tan^2(u)[sec(u)]^{n-2}}] \, du[/tex]
  4. [Integral - Pythagorean Identities] Rewrite:   [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{[sec^2(u) - 1][sec(u)]^{n-2}}] \, du[/tex]
  5. [Integral - Alg] Multiply/Distribute:   [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{sec^n(u)-[sec(u)]^{n-2}}] \, du[/tex]
  6. [Integral - Int Rule 2] Rewrite:     [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^{n-2}} \, du ][/tex]
  7. [Integral - Alg] Distribute:   [tex]\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
  8. Rewrite:     [tex]\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
  9. [Integral - Alg] Isolate Integral Term:     [tex]\int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
  10. [Integral - Alg] Combine Like Terms:     [tex](n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du[/tex]
  11. [Integral 2 - Alg] Rewrite:     [tex](n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {sec^{n-2}(u)} \, du[/tex]
  12. [Integral - Alg] Isolate Original Integral:     [tex]\int {sec^n(u)} \, du = \frac{sec^{n-2}(u)tan(u)}{n-1} + \frac{n-2}{n-1} \int {sec^{n-2}(u)} \, du[/tex]

And we have proved the Reduction Formula!

ACCESS MORE