Respuesta :

Space

Answer:

[tex]\frac{d}{dt} [sec(\frac{t}{2} )] = \frac{1}{2} sec(\frac{t}{2} )tan(\frac{t}{2} )[/tex]

General Formulas and Concepts:

Calculus

  • Chain Rule: [tex]\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
  • Trig u derivative: [tex]\frac{d}{dt} [sec(u)] = u'[sec(u)tan(u)][/tex]

Step-by-step explanation:

Step 1: Define

[tex]\frac{d}{dt} [sec(\frac{t}{2} )][/tex]

Step 2: Differentiate

  1. Trig u [Chain Rule/Basic Power]:                                     [tex]\frac{d}{dt} [sec(\frac{t}{2} )] = \frac{t^{1-1}}{2} sec(\frac{t}{2} )tan(\frac{t}{2} )[/tex]
  2. Simplify:                                                                                 [tex]\frac{d}{dt} [sec(\frac{t}{2} )] = \frac{t^{0}}{2} sec(\frac{t}{2} )tan(\frac{t}{2} )[/tex]
  3. Evaluate:                                                                                    [tex]\frac{d}{dt} [sec(\frac{t}{2} )] = \frac{1}{2} sec(\frac{t}{2} )tan(\frac{t}{2} )[/tex]
RELAXING NOICE
Relax