Question 5
5 pts
Let f(x)
40e^.06t. What is the average rate of change of f over the
interval [0,3]? Give your answer as a decimal with one place of
accuracy to the right of the decimal point.

Respuesta :

Answer:

[tex]R= 2.6[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 40e^{.06t[/tex]

[tex][a,b] = [0,3][/tex]

Required

Determine the average rate of change (R)

This is calculated as follows:

[tex]R = \frac{f(b) - f(a)}{b - a}[/tex]

Where

[tex]a = 0[/tex] and [tex]b = 3[/tex]

Substitute 0 for a and 3 for b

[tex]R = \frac{f(3) - f(0)}{3 - 0}[/tex]

[tex]R = \frac{f(3) - f(0)}{3}[/tex]

[tex]R = \frac{1}{3}[f(3) - f(0)][/tex]

Calculate f(3)

[tex]f(x) = 40e^{.06t[/tex]

[tex]f(3) = 40e^{.06*3}[/tex]

[tex]f(3) = 40e^{0.18}[/tex]

[tex]f(3) = 40 * 1.197[/tex]

[tex]f(3) = 47.88[/tex]

Calculate f(0)

[tex]f(x) = 40e^{.06t[/tex]

[tex]f(0) = 40e^{.06*0}[/tex]

[tex]f(0) = 40e^{0}[/tex]

[tex]f(0) = 40*1[/tex]

[tex]f(0) = 40[/tex]

So, the expression:

[tex]R = \frac{1}{3}[f(3) - f(0)][/tex]

[tex]R= \frac{1}{3}[47.88 - 40][/tex]

[tex]R= \frac{1}{3}[7.88][/tex]

[tex]R= 2.62666666667[/tex]

[tex]R= 2.6[/tex]

Hence, the average rate of change is approximately 2.6

ACCESS MORE