The equivalent expression to[tex]\frac{ sin(x/2)tan(x/2)}{1-cos(x)}[/tex] is [tex]\frac{1}{\sqrt{2(cosx+1)} }[/tex]. option A is correct.
Equivalent expression to[tex]\frac{ sin(x/2)tan(x/2)}{1-cos(x)}[/tex] determine.
What is evaluation?
Evaluation is defined as finding a solutions to mathematical problems.
Here, we have [tex]\frac{ sin(x/2)tan(x/2)}{1-cos(x)}[/tex]
[tex]=\frac{sin(x/2)tan(x/2)}{1-cos(x)}\\ =\frac{sin(x/2)\frac{sin(x/2)}{cos(x/2)} }{2sin^2(x/2)} \\= \frac{sin(x/2)^2}{2cos(x/2)sin^2(x/2)}\\ =1/2cos(x/2)\\=\frac{1}{2\sqrt{(cos(x)+1})/2 } \\=\frac{1}{\sqrt{2(1+cos(x))} }[/tex]
Thus, the equivalent expression to[tex]\frac{ sin(x/2)tan(x/2)}{1-cos(x)}[/tex] is [tex]\frac{1}{\sqrt{2(cosx+1)} }[/tex].
Learn more about evaluation here:
https://brainly.com/question/12837686
#SPJ2