Respuesta :

Answer:  131 g of bromine is required.

Explanation:

The balanced equation will be :

[tex]2AlCl_3+3Br_2\rightarrow 2AlBr_3+3Cl_2[/tex]

To calculate the moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]

moles of [tex]AlCl_3[/tex]

[tex]\text{Number of moles}=\frac{72.4g}{133g/mol}=0.544moles[/tex]

According to stoichiometry :

2 moles of [tex]AlCl_3[/tex] require  = 3 moles of [tex]Br_2[/tex]

Thus 0.544 moles of [tex]AlCl_3[/tex] require=[tex]\frac{3}{2}\times 0.544=0.816moles[/tex]  of [tex]Br_2[/tex]

Mass of [tex]Br_2=moles\times {\text {Molar mass}}=0.816moles\times 160g/mol=131g[/tex]

Thus 131 g of bromine is required.