Answer:
A. 86.64%
B. 80
C. y(t)= 80[tex]e^{0.8664t}[/tex]
D. y(5.5) = 9388
E. y(t) = 8134 bacteria for every hour
F. 8.28 hours
Step-by-step explanation:
a. The bacteria count after 4 hours y(4) = 2560
The bacteria count after 12 hours y(12) = 2621440
equation 1: ye^4k = 2560
equation 2: ye^12k= 2621440
divide (2) by (1),
e^8k = 1024
Taking ln both sides:
ln(e8k ) = ln(1024)
8k = 6.931
k=0.8664 // after dividing both sides by 8
rate of growth k% = 0.8664*100 = 86.64%
b. substituting for k in equation 2:
ye^4*0.8664 = 2560
Initial bacteria count y(4) = 80
c. y(t)= 80e^0.8664t
d. the number of bacteria after 5.5 hours => y(5.5) = 80[tex]e^{0.8664(5.5)}[/tex] ≈ 9388
e. y'(5.5) = 80*0.8664e^0.8664(5.5) = 69.31e^0.8664(5.5) = 8134
f. for bacteria population = 104000
where ye^0.8664t = 104000
y = 80
80e^0.8664t = 104000 //divide both sides by 80
e^0.8664t = 1300
ln(e^0.8664t = ln(1300)
t = 7.17 / 0.8664 = 8.28 hours