Respuesta :
Answer:
a) 0 V
b) 10 turns
c) 4000 turns
d) 12.5 A
e) 400 W
f) 0.5 A
g) 95.4%
Explanation:
A
0
B
To solve this, we would be using the simple relationship between voltage and number of turns
V1/V2 = N1/N2
500/25 = 200/N2
20 = 200/N2
N2 = 200/20
N2 = 10 turns
C
Here also, we would be using the relationship between current and the number of turns
I1/I2 = N2/N1
500/25 = N2/20
20 = N2/20
N2 = 20 * 20
N2 = 4000 turns
D
Like in the previous question, current and the number of turn relationship is used
N1/N2 = I2/I1
400/80 = I2/2.5
5 = I2/2.5
I2 = 5 * 2.5
I2 = 12.5 A
E
The power remains unchanged at 400 W
F
Power = Voltage * Current
P = VI
I = P/V
I = 60/120
I = 0.5 A
G
95.4%
The transformer is a device used to step up or step down voltage.
Part A;
Given that;
Es/Ep = Ns/Np
Es = voltage in the secondary coil
Ep = voltage in primary coil
Ns = Number of turns in secondary coil
Np = Number of coils in primary coil
Es = Ns/Np × Ep
Es = 200/100 × 1.5 V
Es = 3 V
Part B
Ns = Es/Ep × Np
Ns = 25/500 × 200
Ns = 10 turns
Part C
Ns/Np = Ip/Is
Ns = Ip/Is × Np
Ns = 500/25 × 200
Ns = 4000 turns
Part D
Ns/Np = Ip/Is
NsIs = NpIp
Is = NpIp/Ns
Is = 400 × 2.5/80
Is =12.5 A
Part E
The power in the primary coil is the same as the power in the secondary coil. The power in the secondary coil is 400 watts.
Part F
Power supplied = 60 watts
Voltage of primary coil = 120 V
Since;
P = IV
I = P/V = 60/120 = 0.5 A
Part G
Since;
E = 100Pout/Pin
Pin = 120 V × 2 A = 240 W
Pout = 19.4 V × 11.8 A = 228.92 W
E = 100(228.92/240)
E = 95.4%
Learn more: https://brainly.com/question/8646601