Respuesta :
Answer:
[tex]\frac{115\sqrt{14} }{2}[/tex]
Step-by-step explanation:
∫∫ ( x + y + z ) ds
where :
x = u + v , y = u - v , z = 1 + 2u + v ,
0 ≤ u ≤ 5,
0 ≤ v ≤ 1
R ( u,v ) = < u+v , u-v , 1 + 2u +v > next we have to differentiate
attached below is a detailed solution
![Ver imagen batolisis](https://us-static.z-dn.net/files/d5d/a69519b12dcebd1e7449c9b0ff6550ce.jpeg)
The surface integral S(x + y + z) dS, where S is the parallelogram is [tex]115\sqrt{14} /2[/tex] and this can be determined by integrating the given expression.
Given :
The surface integra S(x + y + z) dS, S is the parallelogram with parametric equations x = u + v, y = u − v, z = 1 + 2u + v, 0 ≤ u ≤ 7, 0 ≤ v ≤ 3.
The following calculation can be used in order to determine the surface integral.
[tex]\rm R_u\times R_v = <3,1,-2>[/tex]
[tex]\rm ||R_u\times R_v|| = \sqrt{14}[/tex]
Now, evaluate the surface integral.
[tex]\rm I = \rm \int\int_s(x+y+z)dr[/tex]
[tex]\rm I = \int^5_{u=0}\int^1_{v=0}(u+v+u-v+1+2u+v)||R_u\times R_v||dA[/tex]
[tex]\rm I = \int^5_{u=0}\int^1_{v=0}(u+v+u-v+1+2u+v)\sqrt{14} \;du\;dv[/tex]
[tex]\rm I = \sqrt{14} \int^5_0(v+4uv+\dfrac{v^2}{2})^1_0\;du[/tex]
[tex]\rm I = \sqrt{14} (\frac{3}{2}u+4\frac{u^2}{2})^5_0[/tex]
Simplify the above expression.
[tex]\rm I = \dfrac{115\sqrt{14} }{2}[/tex]
The surface integral S(x + y + z) dS, where S is the parallelogram is [tex]115\sqrt{14} /2[/tex]
For more information, refer to the link given below:
https://brainly.com/question/22008756