Respuesta :

Answer:

[tex]\frac{115\sqrt{14} }{2}[/tex]

Step-by-step explanation:

∫∫ ( x + y + z ) ds

where :

x = u + v ,  y = u - v ,  z = 1 + 2u + v ,  

0 ≤ u ≤ 5,  

0 ≤ v ≤ 1

R ( u,v ) = < u+v , u-v , 1 + 2u +v >   next we have to differentiate

attached below is a detailed solution

Ver imagen batolisis

The surface integral S(x + y + z) dS, where S is the parallelogram is [tex]115\sqrt{14} /2[/tex] and this can be determined by integrating the given expression.

Given :

The surface integra S(x + y + z) dS, S is the parallelogram with parametric equations  x = u + v, y = u − v, z = 1 + 2u + v, 0 ≤ u ≤ 7, 0 ≤ v ≤ 3.

The following calculation can be used in order to determine the surface integral.

[tex]\rm R_u\times R_v = <3,1,-2>[/tex]

[tex]\rm ||R_u\times R_v|| = \sqrt{14}[/tex]

Now, evaluate the surface integral.

[tex]\rm I = \rm \int\int_s(x+y+z)dr[/tex]

[tex]\rm I = \int^5_{u=0}\int^1_{v=0}(u+v+u-v+1+2u+v)||R_u\times R_v||dA[/tex]

[tex]\rm I = \int^5_{u=0}\int^1_{v=0}(u+v+u-v+1+2u+v)\sqrt{14} \;du\;dv[/tex]

[tex]\rm I = \sqrt{14} \int^5_0(v+4uv+\dfrac{v^2}{2})^1_0\;du[/tex]

[tex]\rm I = \sqrt{14} (\frac{3}{2}u+4\frac{u^2}{2})^5_0[/tex]

Simplify the above expression.

[tex]\rm I = \dfrac{115\sqrt{14} }{2}[/tex]

The surface integral S(x + y + z) dS, where S is the parallelogram is [tex]115\sqrt{14} /2[/tex]

For more information, refer to the link given below:

https://brainly.com/question/22008756

ACCESS MORE