Respuesta :
Answer:
A. 444.5 pm
Explanation:
We know that:
[tex]Density = \dfrac{mass \ of \ atoms \ in \ unit \ cell}{total \ volume \ of \ unit \ cell}[/tex]
i.e.
[tex]\rho = \dfrac{n*M}{v_c * N_A}[/tex]
[tex]\rho = \dfrac{n*M}{a^3 * N_A}[/tex]
in a face-centered cubic crystal, the number of atoms per unit cell is (n) = 4
The molar mass of manganese (II) oxide [tex][Mn(11)O] = 70.93 \ g/mol[/tex]
Density [tex]\rho[/tex] is given as 5.365 g/cm³
Avogadro constant [tex]N_A[/tex] = 6.023 × 10²³ atoms/mol
∴
[tex]\rho = \dfrac{n*M}{a^3 * N_A}[/tex]
Making th edge length "a" the subject, we get:
[tex]a^3 = \dfrac{n*M}{\rho* N_A}[/tex]
[tex]a^3 = \dfrac{4*70.93 \ g/mol}{5.365 \ g/cm^3 *6.023 * 10^{23} \ atoms/mol }[/tex]
[tex]a^3= 8.78 \times 10^{-23} \ cm^3[/tex]
[tex]a= \sqrt[3]{8.78 \times 10^{-23} \ cm^3}[/tex]
a = 4.445 × 10⁻⁸ cm
a = 444.5 pm
The unit cell edge length of manganosite is equal to: A. 444.5 pm
Given the following data:
- Density of NaCl = 5.365 [tex]g/cm^3[/tex]
We know that the molar mass of manganese (ll) oxide is equal to 70.93 g/mol.
Avogadro constant = [tex]6.02 \times 10^{23}[/tex]
Since the rock salt is face-centered cubic crystal, the number of atoms per unit cell, n = 4
To find the unit cell edge length of manganosite:
For a crystal structure, density is given by the formula:
[tex]Density = \frac{Mass\; of\;atoms\;in\;a\;unit\;cell}{Total\;volume\;of\;a\;unit\;cell}[/tex]
[tex]\rho = \frac{nM}{N_Aa^3}[/tex]
Where:
- n is the number of atoms per unit cell.
- [tex]N_A[/tex] is Avogadro constant.
- a is the edge length.
- M is the mass.
Making "a" the subject of formula, we have:
[tex]a=\sqrt[3]{\frac{nM}{\rho N_A} }[/tex]
Substituting the parameters into the formula, we have;
[tex]a=\sqrt[3]{\frac{4 \times 70.93}{5.365 \times 6.02 \times 10^{23} }}\\\\a=\sqrt[3]{\frac{283.72}{3.23 \times 10^{24} }}\\\\a=\sqrt[3]{8.79 \times 10^{-23} }}\\\\a = 4.445 \times 10^{-8}\; meters[/tex]
Unit cell edge length, a = 444.5 pm
Read more: https://brainly.com/question/18320053