Answer:
A. 7.95%.
Explanation:
Calculate the expected rate of return for the investment as follows:
[tex]\begin{aligned}
\text { Expected rate of return } &=(\text { Probability } \times \text { Rate of return })+(\text { Probability } \times \text { Rate of return })+\\
&(\text { Probability } \times \text { Rate of retum }) \\
=&(0.40 \times 15 \%)+(0.50 \times 10 \%)+(0.10 \times-3 \%) \\
=& 0.06+0.05-0.003 \\
=& 0.107[/tex]
Calculate the standard deviation of the investment as follows:
[tex]\begin{aligned}
\text { Standard deviation }=&\left\{\begin{array}{l}
\text { Probability } \left.\times(\text { Return }-\text { Expected return })^{2}\right)+ \\
\text { (Probability } \left.\times(\text { Return }-\text { Expected return })^{2}\right)+ \\
\text { (Probability } \left.\times(\text { Return }-\text { Expected return })^{2}\right)
\end{array}\right.[/tex]
=[tex]\sqrt{\left(0.40 \times(0.15-0.107)^{2}\right)+\left(0.50 \times(0.10-0.107)^{2}\right)+} \\
=\sqrt{0.0007396+0.0000245+0.0018769} \\
=\sqrt{0.002641} \\
=0.05139066063011[/tex]