Answer:
49243
Step-by-step explanation:
Given that the population of rabbits on an island is growing exponentially.
Let the population, [tex]P=P_0e^{bt}[/tex]
where, [tex]P_0[/tex] and b are constants, t=(Current year -1994) is the time in years from 1994.
In 1994, t=0, the population of rabbit, P=9600, so
[tex]9600=P_0e^{b\times 0}[/tex]
So, [tex]P_0=9600[/tex]
and in 2000, t=2000-1994=6 years and population of the rabbit, P=18400
[tex]18400=9600 \times e^{b\times 6} \\\\\frac{18400}{9600}=e^{b\times 6} \\\\[/tex]
[tex]\ln(23/12}=6b \\\\[/tex]
[tex]b = \frac{\ln{1.92}}{6} \\\\[/tex]
b=0.109
On putting the value of P_0 and b, the population of the rabbit after t years from 1994 is
[tex]P=9600 \times e^{0.109\times t}[/tex]
In 2009, t= 2009-1994=15 years,
So, the population of the rabbit in 2009
[tex]P=9600 \times e^{0.109\times 15}=49243[/tex]
Hence, the population of the rabbit in 2009 is 49243.