Answer:
[tex]8 \le f(4) - f(2) \le 10[/tex]
Step-by-step explanation:
Given
[tex]4 \le f'(x) \le 5[/tex]
Required
Determine the minimum and maximum value of f(4) - f(2)
This question will be answered using the following mean value theorem.
[tex]f'(x) = \frac{f(b) - f(a)}{b - a}[/tex]
In this case: [tex]b = 4[/tex] and [tex]a = 2[/tex]
So, we have:
[tex]f'(x) = \frac{f(4) - f(2)}{4 - 2}[/tex]
[tex]f'(x) = \frac{f(4) - f(2)}{2}[/tex]
Make f(4) - f(2), the subject:
[tex]f(4) -f(2) = 2 * f'(x)[/tex]
From the given range: [tex]4 \le f'(x) \le 5[/tex]
We have that; f'(x) is at minimum at 4
So, the minimum of f(4) - f(2) is:
[tex]f(4) -f(2) = 2 * 4[/tex]
[tex]f(4) -f(2) = 8[/tex]
We have that; f'(x) is at maximum at 5
So, the maximum of f(4) - f(2) is:
[tex]f(4) - f(2) = 2 * 5[/tex]
[tex]f(4) - f(2) = 10[/tex]
Hence, the minimum and maximum values can be expressed as:
[tex]8 \le f(4) - f(2) \le 10[/tex]