Suppose that 4 ≤ f '(x) ≤ 5 for all values of x. What are the minimum and maximum possible values of f(4) − f(2)? ______≤ f(4) − f(2) ≤ ______

Respuesta :

Answer:

[tex]8 \le f(4) - f(2) \le 10[/tex]

Step-by-step explanation:

Given

[tex]4 \le f'(x) \le 5[/tex]

Required

Determine the minimum and maximum value of f(4) - f(2)

This question will be answered using the following mean value theorem.

[tex]f'(x) = \frac{f(b) - f(a)}{b - a}[/tex]

In this case: [tex]b = 4[/tex] and [tex]a = 2[/tex]

So, we have:

[tex]f'(x) = \frac{f(4) - f(2)}{4 - 2}[/tex]

[tex]f'(x) = \frac{f(4) - f(2)}{2}[/tex]

Make f(4) - f(2), the subject:

[tex]f(4) -f(2) = 2 * f'(x)[/tex]

From the given range: [tex]4 \le f'(x) \le 5[/tex]

We have that; f'(x) is at minimum at 4

So, the minimum of f(4) - f(2) is:

[tex]f(4) -f(2) = 2 * 4[/tex]

[tex]f(4) -f(2) = 8[/tex]

We have that; f'(x) is at maximum at 5

So, the maximum of f(4) - f(2) is:

[tex]f(4) - f(2) = 2 * 5[/tex]

[tex]f(4) - f(2) = 10[/tex]

Hence, the minimum and maximum values can be expressed as:

[tex]8 \le f(4) - f(2) \le 10[/tex]

ACCESS MORE