Given:
A line through the points (7,1,-5) and (3,4,-2).
To find:
The parametric equations of the line.
Solution:
Direction vector for the points (7,1,-5) and (3,4,-2) is
[tex]\vec {v}=\left<x_2-x_1,y_2-y_1,z_2-z_1\right>[/tex]
[tex]\vec {v}=\left<3-7,4-1,-2-(-5)\right>[/tex]
[tex]\vec {v}=\left<-4,3,3\right>[/tex]
Now, the perimetric equations for initial point [tex](x_0,y_0,z_0)[/tex] with direction vector [tex]\vec{v}=\left<a,b,c\right>[/tex], are
[tex]x=x_0+at[/tex]
[tex]y=y_0+bt[/tex]
[tex]z=z_0+ct[/tex]
The initial point is (7,1,-5) and direction vector is [tex]\vec {v}=\left<-4,3,3\right>[/tex]. So the perimetric equations are
[tex]x=(7)+(-4)t[/tex]
[tex]x=7-4t[/tex]
Similarly,
[tex]y=1+3t[/tex]
[tex]z=-5+3t[/tex]
Therefore, the required perimetric equations are [tex]x=7-4t, y=1+3t[/tex] and [tex]z=-5+3t[/tex].