Write parametric equations of the line through the points (7,1,-5) and (3,4,-2). please use the first point as your base-point when writing the equations.

Respuesta :

Given:

A line through the points (7,1,-5) and (3,4,-2).

To find:

The parametric equations of the line.

Solution:

Direction vector for the points (7,1,-5) and (3,4,-2) is

[tex]\vec {v}=\left<x_2-x_1,y_2-y_1,z_2-z_1\right>[/tex]

[tex]\vec {v}=\left<3-7,4-1,-2-(-5)\right>[/tex]

[tex]\vec {v}=\left<-4,3,3\right>[/tex]

Now, the perimetric equations for initial point [tex](x_0,y_0,z_0)[/tex] with direction vector [tex]\vec{v}=\left<a,b,c\right>[/tex], are

[tex]x=x_0+at[/tex]

[tex]y=y_0+bt[/tex]

[tex]z=z_0+ct[/tex]

The initial point is (7,1,-5) and direction vector is [tex]\vec {v}=\left<-4,3,3\right>[/tex]. So the perimetric equations are

[tex]x=(7)+(-4)t[/tex]

[tex]x=7-4t[/tex]

Similarly,

[tex]y=1+3t[/tex]

[tex]z=-5+3t[/tex]

Therefore, the required perimetric equations are [tex]x=7-4t, y=1+3t[/tex] and [tex]z=-5+3t[/tex].

ACCESS MORE