Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

Given the function

[tex]f\left(x\right)=\:x^2\:+8x+4[/tex]

Let's rewrite the function by completing the square.

[tex]0=x^2+8x+4[/tex]

Subtract 4 from both sides

[tex]x^2+8x+4-4=0-4[/tex]

Simplify

[tex]x^2+8x=-4[/tex]

Rewrite in the form (x+a)²=b

[tex]x^2+8x=-4[/tex]

Rewrite in the form x²+2ax+a²

solve for a, 2ax = 8x

[tex]2ax=8x[/tex]

Divide both sides by 2x

[tex]\frac{2ax}{2x}=\frac{8x}{2x}[/tex]

simplify

[tex]a = 4[/tex]

Add a²=4² to both sides

[tex]x^2+8x+4^2=-4+4^2[/tex]

[tex]x^2+8x+4^2=12[/tex]

Apply perfect square formula

(a+b)²= a²+2ab+b²

[tex]\left(x+4\right)^2=12[/tex]               ∵ [tex]x^2+8x+4^2=\left(x+4\right)^2[/tex]

Thus,

[tex]\left(x+4\right)^2=12[/tex]

ACCESS MORE