Respuesta :

Given:

The equation is

[tex]y=-1(x-4.5)^2+15.25[/tex]

To find:

The standard form of the given equation.

Solution:

We have,

[tex]y=-1(x-4.5)^2+15.25[/tex]

It is a quadratic equation.

The standard form of a quadratic equation is [tex]y=ax^2+bx+c[/tex]. So, we need to write the given equation in this form.

[tex]y=-(x-4.5)^2+15.25[/tex]

[tex]y=-[x^2-2(x)(4.5)+(-4.5)^2]+15.25[/tex]         [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]

[tex]y=-[x^2-9x+20.25]+15.25[/tex]

[tex]y=-x^2+9x-20.25+15.25[/tex]

[tex]y=-x^2+9x-5[/tex]

Therefore, the required equation in standard form is [tex]y=-x^2+9x-5[/tex].

ACCESS MORE